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Abstract

We provide a uni�ed construction of the symplectic forms which arise in
the solution of both N�� supersymmetric Yang�Mills theories and soliton
equations	 Their phase spaces are Jacobian�type bundles over the leaves
of a foliation in a universal con�guration space	 On one hand
 imbedded
into �nite�gap solutions of soliton equations
 these symplectic forms assume
explicit expressions in terms of the auxiliary Lax pair
 expressions which
generalize the well�known Gardner�Faddeev�Zakharov bracket for KdV to
a vast class of �D integrable models� on the other hand
 they determine
completely the e�ective Lagrangian and BPS spectrum when the leaves are
identi�ed with the moduli space of vacua of an N�� supersymmetric gauge
theory	 For SU�Nc� with Nf � Nc
� �avors
 the spectral curves we obtain
this way agree with the ones derived by Hanany and Oz and others from
physical considerations	

I� Introduction

A particularly striking aspect of the recent solutions of N�� su�
persymmetric Yang�Mills theories ��� ���� has been the emergence of
integrable structures �	� � �
�� structures which had surfaced in the
completely di�erent context of soliton equations and their Whitham�
averaged counterparts �
�� ���� ����� On the gauge theory side� the moduli
space of inequivalent vacua is identi�ed with a moduli space of certain
compact Riemann surfaces �� and both the e�ective Lagrangian and
the Bogomolny�Prasad�Sommerfeld spectrum can be read o� from the
periods of a meromorphic ��form d� on �� A de�ning property of d�
is that its external derivative �d� be a holomorphic symplectic form �
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on the total space of the bundle whose �ber is the Jacobian J��� of
�� On the soliton side� � coincides with the spectral curve of certain
Toda or spin chain equations �	�� ����� and d� with the pre�potential
of their Whitham equations ����� Moreover� the symplectic form �
coincides with the symplectic structure of these chains� considered as
�nite�dimensional Hamiltonian systems�

The most general type of �nite�dimensional integrable system in
soliton theory is a space of algebraic�geometric� or �nite�gap� solutions
to a soliton equation ����� In their work in the early �����s� Novikov
and Veselov ���� had proposed a notion of analytic symplectic form
and a Hamiltonian theory for algebraic�geometric solutions connected
with hyperelliptic curves� Most of the symplectic forms � which have
arisen so far in supersymmetric gauge theories are special cases of the
Novikov�Veselov forms� As shown in the original ���� Seiberg�Witten ���
work on SU��� gauge theories with hypermultiplets in the fundamental
representation� and in the subsequent Donagi�Witten work �
� on the
SU��� theory with matter in the adjoint representation� the symplectic
forms are also the true indicators of integrability� and often su�ce to
identify the spectral curves themselves�

The main goal of this paper is to build more systematically the
common foundations of the above two theories� We construct general
algebraic�geometric symplectic forms de�ned on phase spaces N g which
are Jacobian�type bundles over the leavesM of a foliation on a universal
con�guration space� This last space is a fundamental ingredient of our
approach� and is de�ned itself as the moduli space of all algebraic curves
with a �xed pair of Abelian integrals �c�f� Section II��

Our construction of symplectic forms and their phase spaces is en�
tirely geometric� To make contact with integrable models� the phase
space N g for each leaf is imbedded in a corresponding space of func�
tions as a moduli space of algebraic�geometric solutions to the soliton
equation� The algebraic�geometric symplectic form �M is identi�ed
with the restriction to N g of a symplectic form de�ned on the space of
functions� Remarkably� in terms of the auxiliary Lax pair of the soliton
equation� these symplectic forms assume completely explicit and simple
expressions�

As an example� consider a two�dimensional soliton equation with the
�at curvature representation

��y � L� �t �A� � �� Lt �Ay � �L�A� � ��
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where

L �
nX
i��

ui�x� y� t��
i
x� A �

mX
i��

vi�x� y� t��
i
x

are linear operators with �N � N� matrix coe�cients� Then the sym�
plectic form �M is given by �c�f� Section IV�

��� �M � �
NX
���

ResP�
� ��
 � �L����A�A����L�� �

� �
� �
dp�

where P� are punctures on the surface� �� �
 are the Baker�Akhiezer
and dual Baker�Akhiezer functions� L���� A��� are the �rst descendants
of the operators L and A�

L��� �
nX
i��

iui�x� y� t��
i��
x � A��� �

mX
i��

ivi�x� y� t��
i��
x �

and dp is the di�erential of the quasi�momentum for the Baker�Akhiezer
function� The formula ��� can be rewritten in turn in terms of the
�ui�s� In this form� they unify many of the known symplectic forms
for spatially �D models� including e�g� the Gardner�Faddeev�Zakharov
form � �u � R x �u � familiar from KdV� More importantly� they also
provide seemingly new symplectic structures for many �D models� as
well as a vast generalization to a whole variety of �D integrable models
for which no symplectic form had been available so far�

There are strong indications that the above universal con�guration
space can also serve as a universal space for the e�ective Lagrangians
of N � � supersymmetric gauge theories� Indeed� it su�ces to imbed
the moduli space of vacua of the gauge theory as a leaf in the universal
con�guration space� in order to obtain the desired Seiberg�Witten �bra�
tion as a pull�back of the existing �bration� Geometric considerations
suggest a natural imbedding in the case of SU�Nc� Yang�Mills theories
with Nf � �Nc �avors� It is intriguing that this imbedding reproduces
the known solutions of ��� � ��� when Nf � Nc � �� but diverges from
the formulas conjectured by Hanany and Oz ��� for Nc�� � Nf � �Nc�
A central issue here is a proper identi�cation of coordinates for the uni�
versal con�guration space with the order parameters of the Yang�Mills
theories� This can only be resolved by a more careful analysis of the
monodromies of the resulting e�ective action at weak coupling� We shall
return to this issue elsewhere�
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II� The universal con�guration space

We shall construct the universal con�guration space as a moduli
space of Riemann surfaces � withN punctures �P��

N
���� and two Abelian

integrals E and Q with poles of orders at most n � �n��
N
���� m �

�m��
N
��� at the punctures� In view of the subtleties inherent to the

multiple�valuedness of Abelian integrals� it is convenient to proceed as
follows�

We de�ne an n��jet �z��n� of coordinates near a puncture P� to be
an equivalence class of coordinates z� near P�� with z� and z�� equivalent
if z�� � z� � O�zn�
�� �� Evidently� the space of n��jets of coordinates
near P� has �nite dimension� equal in fact to n�� Henceforth� we let P�
be a marked puncture� In presence of a jet �z�n near P�� we can de�ne
an Abelian integral Q as a pair �dQ� cQ�� where dQ is a meromorphic
di�erential �or Abelian di�erential � on the surface �� and

��� Q �
�X

k��m

ckz
k � cQ � RQ log z�

if dQ � d�
P�

k��m ckz
k� � RQdz

z is the expansion of dQ near P�� By
integrating dQ along paths� we can then extend the Abelian integral E
holomorphically to a neighborhood of any point in � n fP�� � � � � PNg�
The analytic continuation will depend in general on the path� and we
also keep track of its homotopy class�

Fix now the multi�indices n � �n�� � � � � nN � and m � �m�� � � � � mN��
The universal con�guration space Mg�n�m� can then be de�ned as

��� Mg�n�m� � f�� P�� �z��n� �E�Qg�
where � is a smooth genus g Riemann surface with N ordered points P��
�z��n� is an n��jet of coordinates near each P�� and E� Q are Abelian
integrals with the following expansions near the punctures P�

E � z�n�� � cE �RE
� log z� �O�z���

dE � d�z�n� � O�z��� �RE
�

dz�
z�

�

Q �
m�X
k��

c��kz
�k
� � cQ �RQ

� log z� � O�z������

dQ � d�
m�X
k��

c��kz
�k
� �O�z��� � RQ

�

dz�
z�

�
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The spaceMg�n�m� is a complex manifold with only orbifold singular�
ities� and its complex dimension is equal to

�	� dim Mg�n�m� � 	g � � � �N �
NX
���

�n� �m��

for g � �� Indeed� �g���N parameters account for the moduli space of
genus g Riemann surfaces with N punctures�

PN
��� n� parameters for

the jets of coordinates �z��n� � N �g parameters for the Abelian integral
E �N��� parameters for the independent residues since their sum is �� �
parameter for the constant cE � and g parameters for the Abelian di�er�
entials which can be added without modifying the singular expansions
of ����� and �nally N � g�

PN
���m� for the Abelian integral Q� Alter�

natively� the number of degrees of freedom of an Abelian integral E with
poles of order n � �n�� is ��

PN
����n�������g � N �g�

PN
��� n��

where the �rst � corresponds to the additive constant� and the remain�
ing integer on the left is the dimension of meromorphic di�erentials with
poles of order � n� � � at each P�� Together with a similar counting
for Q and the dimension of the moduli space of Riemann surfaces with
punctures� we recover ���� Note that ��� gives the right dimension for
g � �� ��N � �� although the counting of the dimension is slightly
di�erent�

We can introduce explicit local coordinates on Mg�n�m� �for their
relation to the Whitham theory� see ������ The �rst of these consists of
the residues of the di�erentials dE and dQ�

�
� RE
� � ResP� dE� R

Q
� � ResP� dQ� 	 � �� � � � � N�

The next set of coordinates is only local on the universal con�guration
space� and requires some choices� First� we cut apart the Riemann sur�
face � along a homology basis Ai� Bj � i� j � �� � � � � g� with the canonical
intersection matrix Ai �Aj � Bi �Bj � �� Ai �Bj � �ij � By selecting cuts
from P� to P� for each � � 	 � N � we obtain a well�de�ned branch of
the Abelian integrals E and Q� Locally on the universal con�guration
space� this construction can be carried out continuously� with paths ho�
motopic by deformations not crossing any of the poles� We consider
�rst the case where n� is at least �� Then there exists a unique local
coordinate z� in the jet �z��n� such that

E � z�n�� � RE
� log z�
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in the neighborhood of P�� We then set

T��k �
�

k
ResP��z

k
�QdE�� 	 � �� � � � � N� k � �� � � � � n� �m��

T��� � ResP��QdE�� 	 � �� � � � � N�
�
�

When n� � � and RE
� �� �� we choose the coordinate z� by demanding

that

�
a� E � E�P�� � RE
� log z��

A �nal set of coordinates for the universal con�guration space can
now be de�ned by


Ai�E �

I
Ai

dE� 
Bi�E �

I
Bi

dE����


Ai�Q �

I
Ai

dQ� 
Bi�Q �

I
Bi

dQ����

ai �

I
Ai

QdE� i � �� � � � � g�����

Let D be the open set inMg�m�n� where the zero divisors of dE and dQ�
namely the sets f�� dE��� � �g and f�� dQ��� � �g� do not intersect�
Then we have

Theorem �� �a� Near each point in D� the

	g � � � �N �
NX
���

�n� �m��

functions RE
� � R

Q
� � T��k� 
Ai�E� 
Bi�E� 
Ai�Q� 
Bi�Q� ai of �������� have

linearly independent di�erentials� and thus de�ne a local holomorphic
coordinate system forMg�n�m�	 �b� The joint level sets of the functions
�����
� de�ne a smooth g�dimensional foliation of D� independent of the
choices we made to de�ne the coordinates themselves�

To lighten the exposition of the paper� we postpone the proof of
Theorem � to the Appendix�

The universal con�guration space Mg�n�m� is the base space for a
hierarchy of �brations N k

g �n�m� of particular interest to us� These are
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the �brations whose �ber above each point ofMg�n�m� is the k�th sym�
metric power Sk��� of the curve �� The �rst� N k��

g �n�m� � Ng�n�m��
is just a version of the universal curve� where the �ber above a point of
Mg�n�m� is the Riemann surface � itself� The �bration N g

g �n�m� with
k � g can be viewed as a universal Jacobian� by identifying Sg��� with
the Jacobian J��� via the Abel map

���� � � � � �g�� �j �

gX
i��

Z �i

P�

d�j �

The �brations with k � g enter the study of matrix solitons� as we shall
see later�

Consider now a leaf of the foliation described in Theorem �� denoted
just byM for simplicity� and let N and N g denote the above �brations
restricted to M� To de�ne a symplectic form �M on N g � we begin by
discussing some aspects of di�erentials of the Abelian integrals E and
Q on N �

The �rst key observation is that� although the Abelian integrals E
and Q are multi�valued functions on the universal �bration of curves
over the moduli space Mg�n�m�� their di�erentials are well�de�ned on
N � Indeed� by our normalizations� E and Q are well�de�ned in a small
neighborhood of the puncture P�� Their analytic continuations by dif�
ferent paths can only change by multiples of their residues or periods
along closed cycles� Since along a leaf of the foliation� these ambiguities
remain constant� they disappear upon di�erentiation� We shall denote
these di�erentials along the �brations by �E and �Q� Acting on vectors
tangent to the �ber� they reduce of course to the usual di�erentials dE
and dQ�

Next� we note that the choice of an Abelian integral� say E� also
provides us with a meromorphic connection rE on N � Indeed� at any
point of N � the variety E � constant is intrinsic and transversal to the
�ber� This means we can di�erentiate functions on N along vector �elds
X onM� simply by lifting these vector �elds to vector �elds tangent to
the varieties E � constant� More generally� we can di�erentiate ��forms
df on the �bration of curves � by setting

���� rE
X�df� � rE

X

�
df

dE

�
dE�

Furthermore� the di�erential dQ of any Abelian integral Q along the
�ber can be extended to a ��form on the whole manifold N by mak�
ing it zero along E � constant� We still denote this di�erential by
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dQ� Equivalently� we can trivialize the �bration N with the variables
a�� � � � � ag along the leaf M� and the variable E along the �ber� The

form dQ which we de�ned previously coincides with dQ
dEdE� where dE

is viewed as one of the elements of the basis of ��forms for N in this
coordinate system� The full di�erential �Q is given by

�Q � dQ �

gX
i��

�Q

�ai
dai � dQ � �EQ�

For E� we have �E � dE� and the above connection reduces to rE
�ai

�

�ai �

If we consider now the full di�erential ��QdE� on N � it is readily
seen that it is well�de�ned� despite the multivaluedness of Q� In fact�
the partial derivatives �ai�QdE� along the base M are holomorphic�
since the singular parts of the di�erentials as well as the ambiguities are
all �xed� In particular�

�

�ai
�QdE� � d�i�

where d�i is the basis of normalized holomorphic di�erentialsI
Ai

d�j � �ij �

I
Bi

d�j � 
ij �

and 
ij the period matrix of �� We can now de�ne the desired symplectic
form �M on N g by

���� �M � �
� gX
i��

Q��i�dE��i�
�
�

gX
i��

�Q��i��dE��i� �

gX
i��

dai �d�i �

In many situations� we need to go beyond the case N g� and consider
the �bration N k for k � g� The above form on the leaves M is then
degenerate� However� a non�degenerate form for k � g can be obtained
by restricting N k to the larger leaves �M of the �bration corresponding
to the level sets of all the functions �
����� except for T���� Thus we can
set

� �M �
kX
i��

�Q��i� � dE��i� �

gX
i��

dai � d�i �

k�g
�X
���

dT��� �gd�� �
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where gd�� is a normalized di�erential with only simple poles at P� and
P�� and residues �� and � respectively� This form � �M is meromorphic�
So far we do not know its role� if any� in supersymmetric gauge theories�
but it is responsible for the symplectic structure of �nite�gap solutions
to integrable equations with matrix Lax operators �see Section IV��

III� The symplectic form for the KP hierarchy

Remarkably� the natural geometric symplectic form constructed in
the last section leads directly to a Hamiltonian structure for soliton
equations� We shall derive it explicitly in the case of the Kadomtsev�
Petviashvili �or KP� hierarchy� and show that it reduces� in the case
of KdV� to the familiar Gardner�Faddeev�Zakharov symplectic form on
the space of functions of one variable�

�� Solutions of the KP Hierarchy

We begin by recalling some notions from the algebraic�geometric
theory of solitons ����� A fundamental principle is that to each data
consisting of a smooth Riemann surface � with N punctures P�� lo�
cal holomorphic coordinates z� around each puncture� and a divisor
���� � � � � �g�� there corresponds a sequence fu�i�n�t�g��i�n��� ��n�� of
complex� quasi�periodic functions of an arbitrarily large number of vari�
ables t � �tn����n��� which are solutions of an in�nite integrable basic
hierarchy of soliton equations� The fu�i�ng are obtained via the Baker�
Akhiezer function ��t� z�� z 	 �� which is the unique function mero�
morphic away from P�� with simple poles at �i� i � �� � � � � g� and which
admits the following essential singularity at P�

���� ��t� z�� � exp

�
�X
n��

tn��z
�n
�

�
�X
i��


��i�t�z
i
� � 
��� � ��

For each n� it is then straightforward to derive recursively a unique
linear di�erential operator in ���t���

���� L�n � �
�

�t���
�n �

n��X
i��

u�i�n�
�

�t���
�i�

so that

�
�

�tn��
� L�n���t� z� � ��
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The coe�cients of Ln are the functions we seek� and the soliton equa�
tions they satisfy are the partial di�erential equations in the variables t
resulting from the commutation relations � �

�tn��
� L�n�

�
�tm��

� L�m� � ��
If we let

��	� bN k � f�� P�� z�� ��� � � � � �kg

be the space of data of the above form� we have in this way a map frombN g to the space of sequences of functions fu�i�n�t�g� The space bN k is of
course in�nite�dimensional� but we shall soon restrict to a more man�
ageable �nite�dimensional subspace� The above�de�ned Baker�Akhiezer
functions correspond to linear operators with scalar coe�cients� In the
general case� the Baker�Akhiezer vector�functions which are de�ned by
��	� with k � g � l � � give solutions to the integrable hierarchy with
the �at curvature representation and linear operators with matrix �l�l�
coe�cients �see section IV��

The type of basic hierarchy is characterized by N and k� For exam�
ple� N � �� k � g give the KP hierarchy� while N � �� k � g give the
�D Toda lattice hierarchy� The KdV hierarchy is a reduction of the KP
hierarchy� and in fact� all known hierarchies are reductions of the basic
ones� Henceforth� we shall restrict our attention to the KP hierarchy�
where N � �� and simply drop the index 	 from our notation�

It is instructive to write the Baker�Akhiezer function more explicitly�
The key ingredients are the meromorphic di�erentials d�n� which are
characterized by their expansion d�n � d�z�n � O�z�� near P � and by
their normalization

��
� Re

I
C

d�n � �

for any cycle C� The corresponding Abelian integrals �n can then be
de�ned as

��
� �n � z�n �O�z�

near the puncture P � As before� �n can therefore be extended by an�
alytic continuation to a neighborhood of an arbitrary point in the Rie�
mann surface �� Its value depends on the homotopy class of the path
along which the analytic continuation is performed� and we keep track
of this path as well� The Baker�Akhiezer function can thus be expressed
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as ���

��t� z� � exp

�
�X
n��

tn�n

�
��t� z�

with the quasi�periodic function ��t� z� given by


�t� z� �
�
� R z

�i �
Pg

j��

R �j �i �P�

t�n
tn
��i

�
H
Ai

d�n �
Pg

j�� �ij
H
Bj

d�n� �K
�

�
�R P

�i �
Pg

j��

R �j �i �P�

t�n
tn
��i

�
H
Ai

d�n �
Pg

j�� �ij
H
Bj

d�n� �K
�

�

�
�R P

�i �
Pg

j��

R �j �i �K
�

�
�R z

�i �
Pg

j��

R �j �i �K
� exp

�
�

�X
n��

tn

gX
j��

I
Bj

d�n

Z z

P

�j

�
�

where 
ij is the period matrix of �� and K is the vector of Riemann
constants� We note that although the Abelian integrals �n as well as
the Abel map

R z
�i are path dependent� this dependence cancels in the

full expression for the Baker�Akhiezer function� as it should�

For later use� we also recall here the main properties of the dual
Baker�Akhiezer function �
�t� z�� To de�ne it� we note that the Riemann�
Roch theorem implies that for g points ��� � � � � �g in general position�
the unique meromorphic di�erential

���� d� � d�z�� �
�X
s��

asz
s�

with double pole at P and zeroes at ��� � � � � �g� must also have g other
zeroes� We denote these by �
� � � � � � �
g � The dual Baker�Akhiezer func�
tion �
�t� z� is then the unique function �
�t� z� which is meromorphic
everywhere except at P � has at most simple poles at �
� � � � � � �
g � and
admits the following expansion near P

���� �
�t� z� � exp��
�X
n��

tnz
�n��� �

�X
s��



s �t�z
s��

It is then not di�cult to check that the dual Baker�Akhiezer function
satis�es the equation

���� � �

�tn
�
�t� z� � �
�t� z�Ln�

where the operator Ln is the same as the one of ����� and the above left
�adjoint� action of di�erential operators is de�ned by

�f
�it�� � ����i��it�f
��
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The coe�cients 

s of the expansion ���� for the dual Baker�Akhiezer
function are di�erential polynomials in the coe�cients 
s of the Baker�
Akhiezer function� In fact� we have

ResP �

�t� z�

�
�mt���t� z�

�
d� � �

since the di�erential on the left�hand side is meromorphic everywhere�
and holomorphic away from P � This implies that

mX
l��

X
s
i
j��

Cl
mas




i ��

m�l
t�


j
l� � ��

where a� � �� a� � �� and as are the coe�cients of the expansion ���� of
d� near P � These equations determine 

s recursively through 
s� For
example�



� � �
�� 

� � �
� � 
�� � �t�
��

�� The imbedding of the leaves M into the space of KP solutions
Consider now the �bration N g

g �n� �� of the last section� in the case
of a single �N � �� puncture P � Recall that its base Mg�m� �� consists
of Riemann surfaces � with a puncture P � of jets �z�n of coordinates
around P � and of Abelian integrals E� Q with only poles at P of order
n and � respectively� Its �ber over each point is simply the g�symmetric
power of �� The basic observation is that an element in N g

g �n� �� gives

rise to a data in bN g� Indeed� as we already noted when introducing
local coordinates for Mg�n�m�� the Abelian integral E characterizes a
unique holomorphic coordinate around P in the given jet �z�n� satisfying
E�z� � z�n and the fact that it is in the given jet� We obtain in this
way a map

���� ��� P� �z�n� E�Q� ��� � � � � �g�� ��� P� z� ��� � � ��g�

from N g
g �n� �� into the space of data bN g� and hence into the space of

algebraic�geometric solutions of the KP hierarchy

���� N g
g�� � f�ui�n�t��n��i�� g�

We restrict our attention now to a real leaf M� that is� a leaf of the
foliation of Theorem �� which satis�es the following additional condition

���� Re

I
C
dE � Re

I
C
dQ � �
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for all cycles C on the punctured surface �� We say then that the di�er�
entials dE and dQ are real�normalized� This condition is unambiguous�
On real leaves� the Abelian di�erentials dE and dQ are readily recog�
nized as the Abelian di�erentials dQ � d�� and dE � d�n of ��
��
simply by comparing their singularities at P �

Our main goal is to express the symplectic form �M which we con�
structed earlier in terms of forms on the space of functions fui�n�t�g�
The functions ui�n�t� can be written explicitly in terms of the coe��
cients 
s of the Baker�Akhiezer function ��t� z� with the help of the
equations

nX
i��

ui�n

iX
l��

Cl
i��

i�l
x 
s
l� � 
s
n � s � �n � �� � � � ���� ��

They are di�erential polynomials in the �rst n � � coe�cients 
s�t� of
the expansion ���� of ��

The equations for ui�n are almost invertible� Let us consider them as
a system of equations for unknown functions 
s� s � �� � � � � n� � with
ui�n given� Then 
s� s � n� � are uniquely de�ned by this system if we
�x the initial data�


s�t�jx�� � �s�t�� t�� � � ���

That ambiguity does not e�ect the �rst n�� coe�cients of an expansion
of the logarithmic derivative of ��

The n� � leading coe
cients h��t�� � � � � hn���t� of the expansion

����
�t��

�
� z�� �

�X
s��

hsz
s

are di�erential polynomials

hs�t� � hs�ui�n� �t�ui�n� � � ��

in the ui�n�s� The same is true for the �rst n � � coe
cients
h
� �t�� � � � � h
n���t� of the expansion of the dual Baker�Akhiezer function

��	�
�t��




�

� �z�� �

�X
s��

h
s z
s�
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The di�erential polynomials hs and h


s are universal and depend on

n only� For the remainder of this section as well as Section IV� we shall
adopt a notation of greater use in the study of soliton equations� and
set

x � t�� p � ��

as the basic space�variable and its corresponding quasi�momentum� We
also �x an n� and set y � tn� In this notation� we have for example

h� �� �

n
un���n�

h� �
n � �

n
un���n�x � �

n
un���n�

h� �� �n� ���n� ��


n
un���n�x �

n� �

�n�
u�n���n��
�

�
n� �

�
un���n�x � �

n
un���n�

while the �rst few coe�cients h
s are given by

h
� �
�

n
un���n�

h
� �
�� n

�n
un���n�x �

�

n
un���n�

��
�

The mean values of the polynomials hs�t� are equal to the �rst coe��
cients of the expansion of the Abelian integral p � ���

p � z�� �
�X
s��

Hsz
s�

Hs �� hs�t� �x� lim
L��

Z L

�L

dx

�L
hs�x� y������

The bundles N g over real leaves M of the foliated manifold Mg�n� ��
can now be recognized as the preimage under the map ���� of the level
sets of the integrals Hs �� hs �x�

We can now state one of our main results�

Theorem �� Let N g be the Jacobian bundle over a real leaf M of
the moduli space Mg�n� ��� Then the symplectic form �M of ���� can
be expressed as

���� �M � ResP
� ��
 � �L� �

� �
� �
dp � n

n��X
s��

� �hs �
Z t�

��h
n�s ��
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where hs � hs�ui�n� � � �� and h
s �ui�n� � � �� are the above di�erential poly�
nomials� the ��forms �hs and �

�h
s are de�ned respectively by

���� �hs �
n��X
i��

�ui�n
X
l

���t��l
�hs

�u
�l�
i�n

� ��h
s �
n��X
i��

�u
�l�
i�n

X
l

�h
s

�u
�l�
i�n

�

and � � � denotes the average with respect to both variables x � t� and
y � tn of quasi�periodic functions

� f �� lim
L�M��

Z L

�L

dx

�L

Z M

�M

dy

�M
f�x� y��

Important Remark� In general� �nite�gap solutions to soliton equa�
tions are complex meromorphic functions of all variables� This requires
a more delicate de�nition of averaging� Without discussing this point
in detail� we would like to mention that the averaging we adopt in this
paper is valid at least for real and smooth solutions of soliton equations�
The corresponding constraints for algebraic�geometric data singles out
the real part of the con�guration space�

Proof of Theorem �� We had noted earlier that the full di�erentials
of two Abelian di�erentials �p and �E are well�de�ned on the �bration
N � In terms of the imbedding ����� the di�erentials of E � �n and
p � �� satisfy the following important relation ���

���� �E � �p
dE

dp
�
� �
�Ln� �

� �
� �
�

where �Ln is given by

�Ln �
n��X
i��

�ui�n�t��
i
x�

Now the symplectic form �M can be expressed as

���� �M �

gX
s��

�p��s� � dE��s��



��� on the integrable geometry of soliton equations

As we had seen in the discussion leading to the equation ����� �E � dE�
Thus we may write in view of ����

�M �

gX
s��

�
dE��s�� � �
�Ln� �

� �
� �
��s�

� dp
dE

��s� � dE��s�

� �
gX

s��

� �
�L� �

� �
� �
��s� � dp��s������

Our next step is to rewrite this expression in terms of residues at the
marked puncture P � For this� we begin by changing coordinates on the
Jacobian� Now the Baker�Akhiezer function ��t� z� has g zeroes �s�t�
on � outside of the puncture P � The Riemann�Roch Theorem implies
that these punctures coincide with the poles ���� � � � � �g� when t � ��
Otherwise� as t varies� the dependence of the zeroes �s�t� allows us to
consider any set of g times ti� � � � � � tig for which the corresponding �ows
are independent� as a system of coordinates on the Jacobian Sg���� In
general position� we can choose t�� � � � � tg as this system� The transfor�
mation from these coordinates to the system �f����� � � � � f��g�� de�ned
by an Abelian integral f on � is described by the following formula

���� �tif���t�� � Res��t�
�ti��t� z�

��t� z�
df�

In the present case� we �nd

��	� �M � �
gX

s��

Res�s

�
� �
�L� �

� �
� �
� �t�

�
jt��

�
dp�

where
�t�

�
�

gX
j��

�j��t� P �

��t� P �
dtj �

The variation �t can be viewed as the restriction of the full variation �

to a �ber of N g� In view of the properties of the dual Baker�Akhiezer
function� the di�erential d� of ���� can be recognized as ���

��
� d� �
dp

� �
� �
�

Therefore� the di�erential on the right�hand side of ��	� is a meromor�
phic di�erential with poles at P and the points �s � �s��� only� Thus
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the sum of the residues at �s is just the opposite of the residue at P

�M � ResP

�
� �
�L� �

� �
� �
� �t�

�
jt��

�
dp�

Let �Js�t� be the coe�cients of the expansion

��
�
�
��L��

� �
� �
dp � �

�X
s��

�Js�t�z
�n��
sdz�

The equation ���� implies that

� �Js�t� �x� �Hs � �� s � �� � � � � n� ��

since the mean values Hs are �xed along the leaf M �recall � � �x

denotes averages with respect to x� keeping tn � y �xed�� In particular�

���� �M � �
gX

j��

� �Jj
n�t� � � dtj �

Next� the di�erential

�j�

�t� P ���L��t� P ��

� �
� �
dp

is holomorphic on � except at P � Therefore� its residue at this point is
equal to zero and we obtain

���� �Jj
n�t� �
n��X
s��

�Js�t�h


n�s�i�t�

with h
s�j�t� the coe�cients of the expansion

����
�j�


�t� P �

�
�t� P �
� �z�j �

�X
s��

h
s�j�t�z
s�

Therefore� ���� and ���� imply that

�M � �ResP
� �t�


 � �L� �

� �
� �
dp�

We would like to replace the partial variation �t along the �ber in the
preceding formula by the full variation �� To this e�ect� we show now
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that the residue of the contribution of the orthogonal variation �E� i�e��
the variation with �xed E��s�� vanishes�

ResP
� �E�
 � �L� �

� �
� �
dp � ��

Indeed� the left�hand side can be rewritten as

�E
�
ResP

� log�
��
�L�� �

� �
� �
dp

�
� �E

�X
s

��i

Z ��s �t�

��s

�EpdE

�
� �

with the second equality a consequence of the main property of di�er�
entials� ��E�� � �� This establishes the �rst identity stated in Theorem
��

Next� it follows from ���� that

� log �
 � �

�
c�t�� t�� � � � � k� �

Z x

x�

�x ln�



�
� �

�X
s��

�
cs�t�� t�� � � � � k� �

Z x

x�

h
s dx

�
�

Since � �Js �x� �� the above integration constants are immaterial� and
we obtain

�M � �
n��X
s��

� �Js �
Z x

x�

��h
n�sdx � �

From its de�nition ��
�� �Js does not contain variations of derivatives
of ui� Therefore� for s � �� � � � � n� ��

�Js � �n�hs
�u

�u�

Substituting in the preceding equation gives the second identity in The�
orem ��

�� The symplectic form for the Korteweg�de Vries Equation

The KdV equation corresponds to n � �� The relevant di�erential
operator L is then the second order di�erential operator

L � ��x � u�x� y��
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and its coe�cients are quasi�periodic functions u�x� y� of two variables
�y � t��� In this case the formula ���� becomes

���� �M � ��

�
� �u �

Z x

x�

�u dx ��

and �M is well�de�ned on a space of functions with �xed mean value in
x�

� u �x� H� ��� �u �x� ��

The symplectic form ���� reduces to the Gardner�Faddeev�Zakharov
symplectic form when u�x� y� � u�x� is a function of one variable only�
In this case� we get a reduction of the KP equation to the KdV equation

ut �
�

�
uux �

�

�
uxxx�

Indeed� for n � �� the di�erentials dp and dE at the puncture P have
the form

dp � d�z�� �O�z��� dE � d�z�� �O�z���

Consider the leaf of the foliation de�ned by these di�erentials which
corresponds to dE with all zero periodsI

C

dE � �

for an arbitrary cycle C� In this case� the Abelian integral E�P � is
a single�valued function� with only a pole of second order at P � The
corresponding curve is a hyperelliptic curve given by an equation of the
form y� �

Q�g
�
i�� �E � Ei�� and P is the point at in�nity E � 
� For

�nite�gap solutions of the KdV equation� the periods

ai �

I
Ai

pdE

are canonically conjugated �with respect to the Gardner�Faddeev�Zakharov
symplectic structure� to the angle variables �see ���� and references
therein�� Our result is a generalization of this statement to the KP
theory� Note that the leaves of the foliation corresponding to non�zero
values of the periods of dE de�ne a deformation of the space of hyperel�
liptic curves in the moduli space of arbitrary curves with one puncture�
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�� The symplectic form for the Boussinesq Equation
The Boussinesq equation corresponds to the case n � �� in which

the operator L is the third order di�erential operator

L � ��x � u�x � v�

The fundamental formula ���� becomes

�M � ��

�

�
�u �

Z x

x�

�v dx � �v �
Z x

x�

�u dx

�
�

which is a symplectic form on a space of two quasi�periodic functions
u � u�x� y�� v � v�x� y� satisfying the constraints

� u �x� const� � v �x� const�

The corresponding Poisson brackets have the form

���� fF�Gg � �

�
�
�F

�u
�x
�G

�v
�
�G

�u
�x
�F

�v
��

The leaf of the foliation de�ned by the di�erentials dp and dE � d��

with the periods of dE all zero� corresponds to a reduction of the KP
equation to the Boussinesq equation�

���� ut � �vx � uxx� vt � vxx � �

�
uxxx � �

�
uux�

Note that the usual form of the Boussinesq equation

utt � �
�

�
uux �

�

�
uxxx�x � �

as an equation on one unknown function u� is the result of eliminating
v from the system �����

The system ���� is a Hamiltonian system with the bracket ���� and
the following Hamiltonian

���� H �
�

�
� v� � uvx �

�

�
u�x �

�

�
u� � �

In terms of H the equations for u and v assume the remarkably simple
form

��	� ut �
�

�
�x
�H

�v
� vt �

�

�
�x
�H

�u
�

We observe that the present Poisson bracket seems to di�er from the
well�known Gelfand�Dickey bracket ��	� as well as from the generalized
Gardner�Faddeev�Zakharov bracket� It would be interesting to under�
stand better the relation between all of them�
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IV� Other integrable models

It is straightforward to extend the preceding formalism to more gen�
eral situations� including matrix cases� higher symplectic forms� and
Calogero�Moser models� In this section� we discuss a few examples�

�� The �D Toda Lattice
The �D Toda lattice is the system of equations for the unknown

functions �n � �n�t
� t���

��

�t
�t�
�n � e�n��n�� � e�n����n �

It is equivalent to the compatibility conditions for the following auxiliary
linear problems

�
�n � �n
� � vn�n� vn � �
�n� ���n � cn�n��� cn � e�n��n�� �

A construction of algebraic�geometric solutions to the hierarchy of this
system was proposed in ��
��

Let � be a smooth genus g algebraic curve with �xed local coordi�
nates z� in the neighborhoods of two punctures P�� Let t � �tm���

�
m��

be the set of time parameters� For any set of g points �s in general
position� the Baker�Akhiezer function is the unique function �n which
is meromorphic on � outside the punctures� has at most simple poles at
the points �s� and admits the following singularities near P��

�n�t� z�� � z��n�

�
�X
s��


�s �n� t�z
s
�

�
exp�

�X
m��

tm��z
�m
� �� 

� � ��

The times t� appearing in the Toda lattice correspond to t��� in the
Baker�Akhiezer function� We obtain a solution of the Toda lattice by
setting

�n � log 
�� �n� t��

The integer n acts as a discrete space variable� It couples to the quasi�
momentum p� which is the Abelian integral characterized by the fact
that dp has simple poles at the punctures P� with residues �� respec�
tively� and is real�normalized� The di�erential which couples to the
variable t
 is the di�ferential d�
 which has a pole at P
 of the form

d�
 � d�z��
 � O�z
���
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Theorem �� The symplectic form �M corresponding to the di�er�
entials dp and dE � d�
 is equal to

��
� �M � �
X
���

ResP�
� ��


n � �L�n �
� �


n �n �
dp �� ��n � �vn ��

where �n is the corresponding algebraic�geometric solution to the �D
Toda lattice� and vn � �
�n�

�� Matrix Equations
We show now that the algebraic�geometric symplectic form �M gen�

erated by two real�normalized di�erentials dp and dE having poles of
orders � and n respectively at N punctures P�� is a restriction of a sym�
plectic form de�ned on a space of linear operators with matrix �N �N�
coe�cients�

The algebraic�geometric solutions to equations which have the zero�
curvature representation

��
� ��y � L� �t �A� � �� Lt �Ay � �L�A� � �

with

���� L �
nX
i��

ui�x� y� t��
i
x� A �

mX
i��

vi�x� y� t��
i
x

linear operators with matrix �N � N� coe�cients� was constructed in
���� �an updated version is in ����� The construction is based on the
concept of vector Baker�Akhiezer function ��x� y� t� z��

We �x a set of constants a� and a set of polynomials in z��

q��z
��� �

m�X
j��

qj��z
�j �

Then for any smooth genus g algebraic curve � with �xed local coor�
dinates z� in the neighborhood of the punctures P�� and for any set of
g � N � � points �s 	 � in general position� �� is the unique function
which is meromorphic outside the punctures� has at most simple poles
at the points �s� and has the following form in the neighborhood of the
puncture P�

���x� y� t� z� �

�
���� �

�X
s��


���s �x� y� t�zs

�
ez
��x
a�z

�ny
q��z
���t�

z � z� �����



i� m� krichever � d� h� phong ���

The vector Baker�Akhiezer function ��x� y� t� z� is de�ned by
����x� y� t� z��

N
���� There exists then unique operators L and A of the

form ���� such that

�	�� ��y � L���x� y� t� P � � �� ��t �A���x� y� t� P � � ��

The coe�cients of the operators can be derived from the following sys�
tem of linear equations

�	��

nX
i��

ui

iX
l��

Cl
i��

i�l
x 
s
l� � 
s
nA� A

��� � a��
����

s � �n� � � � ���� ��

�	��

mX
i��

vi

iX
l��

Cl
i��

i�l
x 
s
l� �

mX
j��


s
j �qj � �q���j � qj���
����

s � �m� � � � ���� ��

In particular� we have

�	�� un � A� un�� � �
�� A�� un�� � �
�� A�� n�x
�� � � � �

The de�ning condition �	�� implies that the operators L and A sat�
isfy the compatibility conditions ��
�� and hence are solutions of the
corresponding non�linear equations�

We also require the concept of the dual vector Baker�Akhiezer func�
tion �
�x� y� t� P �� which should be considered as row�vector� whose
components �


� are characterized by the following analytical proper�
ties� Let d� be a unique di�erential with poles of the form

d� � d�z��� �O�z����

at the punctures P�� and with zeros at the marked points �s� In addition
to �s� it has g � N � � other zeros which we denote �
s � Then �


� is
the unique function which is meromorphic outside the punctures� has
at most simple poles at the points �
s � and has the form

�

� �x� y� t� z� �

�
���� �

�X
s��


����
s �x� y� t�zs

�
e�z

��x�a�z
�ny�q� �z���t�

z � z� �
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in the neighborhood of the puncture P� �

Theorem �� The restriction of the form

�	�� �M � �
� g
N��X

s��

p��s� dE��s�
�
�

to the �bration N g
N�� over the leaf M in Mg�n� �� given by real�
normalized meromorphic di�erentials dp and dE with poles at the punc�
tures of the form

dp � d�z�� � O�z��� dE � d�a�z
�n � O�z��

is equal to

�		� �M � �
NX
���

ResP�
� ��
 � �L� �

� �
� �
dp�

The proof of the theorem is essentially identical to that of the scalar
case� We observe that� although the proof relies on the vector Baker�
Akhiezer function as a function which depends on a in�nite number of
times t��i� the statement of the theorem itself uses only three marked
times �x� y� t��

As a concrete example� we discuss the N�wave equation� Consider
the case n � �� In this case the operator L has the form

L � A�x � u�x� y��

where A is the N �N matrix

A��� � a����� �

and u�x� y� is an N �N matrix with zero diagonal entries u��� � �� As
shown in ���� and references therein� form � �� the leaves corresponding
to zero periods of dE give solutions to the so called N �wave equation�

The equations �	����	�� imply that

u��� � �a� � a��

���
� �

From the de�nition of the dual Baker�Akhiezer function it follows that


���� � 
����
� � ��
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Thus the right�hand side of the formula �		� de�nes the following sym�
plectic form �M on the space of matrix�functions u with zero diagonal
elements�

�	
� �M �
X
� ���

�

a� � a�
�u��� � �u����

�� Higher symplectic forms
So far we have considered only the cases where the di�erential dQ

has poles of order � at the punctures P�� or simple poles with resides
�� at the punctures P�� � In these cases dQ may be identi�ed with the
di�erential of the quasi�momentum coupled with the marked variable
x in the case of di�erential operators� or the discrete variable n in the
case of di�erence operators�

We consider now the general case� Let dE and dQ be real�normalized
di�erentials having at the puncture P� the form

dE � a�d�z
�n � O�z��� dQ � d�q��z

��� �O�z���

If the polynomials q��z
��� are the same as in ����� the di�erentials

dE and dQ reduce to the di�erentials of the quasi�momenta for the
corresponding Baker�Akhiezer function with respect to the variables y
and t�

Theorem �� The restriction of the form

�	
� �M � �
� g
N��X

s��

Q��s�dE��s�
�

to a leaf of the corresponding foliation is equal to

�	�� �M �
NX
���

ResP�
� ��
 � �L����A� A����L�� �

� �
� �
dp�

where L��� and A��� are the �rst descendants of the operators L and A
given in �����

�	�� L��� �
nX
i��

iui�x� y� t��
i��
x � A��� �

mX
i��

ivi�x� y� t��
i��
x �
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The proof of this theorem follows the same lines as the proof of The�
orem �� with the identity ���� replaced by the following generalization�
whose proof was also given in ��� �the additional terms in ��� cancel on
the leaves we are considering�

�Q�E� �
� �
�L����A� A����L�� �

� �
� �

dQ

dE
�

As an example� consider the case where the number of punctures N
is �� n is �� and m is �� The corresponding operators L and A are

�
�� L � ��x � u�x � v� A � ��x �
�

�
u�

The operators L��� and A��� are then given by

L��� � ���x � u� A � ���x�

and the identity �	�� becomes

�M ��
�

�
u�u �

Z x

x�

�u dx� ��v �
Z x

x�

�v dx

� ��u � �v � �

�
�ux � �u � �

�
��

The right�hand side is well�de�ned on a space of two quasi�periodic
functions u�x� y� and v�x� y� satisfying the constraints

�
�� � u �x� const� � v �x� const� � u� �x� const�

�� The elliptic Calogero�Moser System
Until now we have only discussed systems where the Lax pair L�A

does not contain a spectral parameter� However� there is strong evidence
that the present approach is quite general� and can extend to this case
as well� A good example is the elliptic Calogero�Moser system� which
we discuss next�

The elliptic Calogero�Moser system ��
� is a system of N identical
particles on a line interacting with each other via the potential V �x� �
��x�� where ��x� � ��xj�� ��� is the Weierstrass elliptic function with
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periods ��� ���� The complete solution of the elliptic Calogero�Moser
system was constructed by algebraic�geometric methods in ���� There it
was found that the equations of motion

�
��  xi � �
X
j ��i

���xi � xj�� ��x� �
d��x�

dx

have a Lax representation depending on a spectral parameter z� The
Lax operator L has the form�

�
�� Lij�t� z� � pi�ij � ���� �ij���xi � xj � z�� pi � !xi�

with ��x� z� given by

��x� z� �
��z � x�

��z���x�
e��z�x�

The characteristic polynomial

R�k� z� � det��k � L�t� z��

is time"independent� and de�nes a time�independent spectral curve �
by the equation

�
	� R�k� z� �
NX
i��

ri�z�k
i � ��

where the ri�z� are elliptic functions of z� The Jacobians J��� of the
spectral curves � are levels of the involutive integrals of the system� In
particular� we obtain angle variables �i by choosing ���periodic coordi�
nates on them� It should be mentioned that although the exact solution
to the Calogero�Moser system in terms of #�functions was found in ��
��
the action�variables ai canonically conjugated to the angle�variables �i
were found only relatively recently in ����� There it was shown that the
Calogero�Moser sytem can be obtained through a Hamiltonian reduc�
tion from the Hitchin system� and as a result� the action�variables ai are
the periods of the di�erential kdz along A�cycles of the spectral curve
��

We show now that this statement can be obtained directly from
our approach� Let C�P � � �c�� � � � � cN� and C
�P � � �c
� � � � � � c



N� be

solutions of the linear equations

�

� ��k � L�z��C � �� C
��k � L�z�� � ��
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where C is considered as a column�vector� C
 as a row�vector� and
P � �k� z� is a point of the spectral curve �� If we normalize the
eigenvectors C and C
 by the conditions

�

�
X
i

ci���xi� z� � ��
X
i��

c
i ��xi� z� � ��

then it follows from ��� that C�P � and C
�P � are meromorphic func�
tions on � outside the points P� on � corresponding to z � �� and have
N poles� We denote these poles by ��� � � � � �N and �
� � � � � � �



N � respec�

tively� Near the points P�� the components of these vectors have the
form

�
�� ci�P � � �c�i �O�z��exiz
��

� c
i �P � � �c��
i � O�z��e�xiz
��

and

c�i � ��
X
i

c�i � � for 	 � ��

c��
i � ��
X
i

c��
i � � for 	 � ��
�
��

The formalism in this paper applies exactly as before to produce the
following formula for the symplectic form for the Calogero�Moser system

�
�� ���
NX
s��

k��s�dz� �
NX
���

ResP�
� �C
 � �LC �

� C
C �
dz�

with � f
g � the usual pairing between vectors and co�vectors� Sub�
stituting in the expansion �
��� �
��� we obtain at once

�
�� ��
NX
s��

k��s�dz� �
�

�

NX
i

�pi � �xi�

V� N � � supersymmetric SU�Nc� gauge theories

We turn now to a discussion of the universal con�guration space
Mg�n�m� and of the symplectic forms �M in the context of N�� su�
persymmetric Yang�Mills theories with gauge group SU�Nc��

We consider gauge theories with Nc colors and Nf �avors� The
�eld content is an N�� chiral multiplet and Nf hypermultiplets of bare
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masses mi� The N�� chiral multiplet contains a complex scalar �eld �
in the adjoint representation of SU�Nc�� Classically� the �at directions
in the potential correspond to � lying in the Cartan subalgebra� Thus
the theory admits a �Nc � ���dimensional space of vacua� which can be
parametrized by the order parameters

�
�� uk � Tr � �k �� k � �� � � � � Nc�

It is often more convenient to work with the parameters si� i � �� � � � � Nc�
de�ned recursively by s� � �� s� � u� � �� and

�
�� ksk �
kX
i��

sk�iui � ��

In the weak coupling limit� the sk �s correspond to k th symmetric poly�
nomials in �� but they do not of course admit in general such a simple
interpretation� In the N�� formalism� the e�ective Lagrangian is of the
form

L � Im
�

��

� Z
d�� �iF�A� $Ai �

�

�

Z
d�� �i�jF�A�W iW j

	
�

where the Ai�s are N�� chiral super�elds whose scalar components cor�
respond to the eigenvalues of �� The holomorphic pre�potential F as
well as the spectrum of BPS states can all be determined by �nding a
�bration of spectral curves as well as of Seiberg�Witten forms d� over
the moduli space of vacua� and setting

a �
I
A
d�� aD �

I
B
d��

�F
�ai

� aD�i�

M�
BPS � �jZj�� Z �

NcX
i��

�nieai � nimaD�i� �

NfX
i��

Simi�

�
��

Here the Si�s are U��� charges corresponding to global symmetries� and
nie and nim are respectively electric and magnetic charges� Some key
requirements for � and d� are e�g� consistency with the weak coupling
evaluation of the monodromies of the e�ective Lagrangian as the gauge
bosons become massless� with instanton contributions� with the classical
limit� and with an in�nite mass limit reducing the number of �avors ����
����

We shall construct the desired �bration of spectral curves and vector
bundle simply by identifying the moduli space of gauge vacua with an
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appropriate leaf M in our universal con�guration space Mg�n�m�� for
a suitable choice of n�m and g� Thus set� in the notation of Section II�

g � Nc � �� �P�� � �P
� P��P�� � � �PNf
��

m � �m
� m��m�� � � � � mNf
� � ��� �� �� � � � � ����
	�

n � �n
� n��n�� � � � � nNf
� � ��� �� �� � � � � ���

In the resulting con�guration spaceMg�n�m�� consider the leafMNc�Nf

characterized by the following conditions on the singular parts of the
Abelian integrals E and Q

RE
� � � for � � 	 � Nf � RE

� � Nc �Nf �

RQ
� � � for � � 	 � Nf � RQ

� � ��

T��� � �m�� � � 	 � Nf � T
�� � ��

T
�� � �Nc�
���Nc ��

�

T��� � �Nc �Nf��
%

�
����Nc�Nf ��

T��� � �� � � 	 � Nf �

and the following conditions on their periods

�

�

I
A
dQ �

I
B
dQ � ��

�
��
�

��i

I
A
dE � m 	 ZNc���

�

��i

I
B
dE � n 	 ZNc���

The conditions on Q imply that Q is actually a well�de�ned meromor�
phic function on �� with only simple poles at P�� The third condition
in �

� means that Q�Pi� � �mi� Now a point of the universal con�gu�
ration space also requires a jet of coordinates at each puncture P� and
Pi� In the present case� these jets are provided by the function Q� more
precisely� by Q�� at P�� and by Q�mi at Pi�

The form dE is a meromorphic form with only simple poles at Pi
and P�� Its residues at Pi are �� while its residues at P
 and P� are
respectively �Nc and Nc �Nf � The form d� � QdE is a single�valued
meromorphic ��form on �� We identify it with the Seiberg�Witten form
of the gauge theory� Since its residues at Pi� � � i � Nf � are �mi�
we recognize the parameters mi� � � i � Nf � as the masses of the
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hypermultiplets in the gauge theory� The residues of d� depend then
linearly on the masses� as they should in order for the BPS spectrum
�c�f� �
��� to be expressible in terms of the periods of d�� We shall see
shortly that the remaining parameter % in �

�� can be interpreted as
essentially the dynamically generated scale of the gauge theory�

We pause brie�y to discuss the holomorphicity of the derivatives
along MNc�Nf

of QdE� As we have seen in Section II� the notion of
derivatives requires a connection� which is in the case provided by the
level sets of the Abelian integral E� It is with respect to this connection�
rE � that the derivatives of QdE are holomorphic� However� the roles
of E and Q are almost interchangeable� and we can consider rQ�QdE�
as well� On functions f � the two connections are related by

�
�� rE
Xf � rQ

Xf �
df

dE
rQ
XE�

With respect to the connection rQ� the derivatives of QdE will develop
poles� However� interchanging the roles of E and Q� we can see that
rQ�EdQ� is holomorphic� In fact� equation �
�� implies that

���� rE�QdE� � �rEQ�dE � �rQQ� dQ

dE
rQE�dE � �rQ�EdQ��

This shows that at the level of derivatives alongMNc�Nf
� the two forms

QdE and EdQ are interchangeable� However� for the leaf MNc�Nf
we

are discussing� only QdE is well�de�ned�

We derive now the equation of the curve �� First� it follows from
the existence of a meromorphic function Q with exactly two simple
poles that � is a hyperelliptic Riemann surface� Next� the integrality
conditions �
�� imply that� although E is a multiple�valued Abelian
integral� the function

���� w � exp E

is a well�de�ned meromorphic function on �� with only poles at P��
of order respectively Nc and Nf � Nc� As a consequence� there exists
polynomials A�Q� and B�Q� of degrees respectively Nc and Nf such
that

���� w �
B�Q�

w
� �A�Q��
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At the ��nite� zeroes Pi of w� Q�Pi� � �mi� and thus B�Q� must be of
the form

���� B�Q� � �%

NfY
i��

�Q�mi�

for a suitable constant �%� We shall show that this parameter �% is the
same as the earlier % parametrizing the leaf� For this� we consider the
expansion of the Abelian integral E near P
 in terms of Q� Recall
that the coordinate z appearing in the de�nition of T
�k is de�ned by
E � �Nc log z� Thus the fourth condition in �

� means that Q �
����Ncz�� � O���� and we have near P


���� E � Nc log Q� log � �O�Q����

Similarly� near P�� we have

��	� E � ��Nc �Nf� log Q� log � � log
%

�
� O�Q����

This means in particular that the parameter % of �

� can be interpreted
as the regularized version of the following logarithmically divergent in�
tegral

��
� log
%

�
�
� Z P�

P�

dE
�
� ��Nc �Nf� log QjQ���

This is a con�rmation of the interpretation of % as a scale� since the
classical limit % � � does correspond to the two poles P� becoming
in�nitely separated� and to the curve � degenerating to the classical
curve� We can now determine �% by evaluating the right�hand side of
��
�� using the equation for w� We �ndZ P�

P�

dE � � log
A �

p
A� �B

A �pA� �B jQ��

� ���Nc �Nf� log Q� log
�%

�
�

so that % agrees with �%�

We can also write the form d� � QdE in terms of the polynomials
A�Q� and B�Q�� Setting y � w �A�Q�� we �nd

��
� d� �
Q

y
�A� � �

�

B�

B
�A� y��dQ�
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The poles P�� � � � � PNf
of this form d� occur on only one sheet of the

hyperelliptic surface �� The symmetric version with poles on both sheets
adopted by Seiberg and Witten ��� �see also Hanany and Oz ���� can be
obtained by symmetrizing

���� d�� �
Q

y
�A� � �

�

AB�

B
�dQ�

We note that this does not a�ect the physics� since the di�erence QB�

�B dQ
is y�independent� and hence has zero periods�

As we can see from Theorem �� a natural parametrization of the leaf
MNc�Nf

is in terms of the periods ai of d� � QdE along A�cycles� This
is particularly attractive from the viewpoint of gauge theories� since the
ai�s are the scalar components of the light super�elds in the e�ective
theory� The dual �elds aD�i as well as the e�ective Lagrangian F are
already determined by our formalism without having to parametrize
MNc�Nf

speci�cally in terms of the order parameters uk of the gauge
theory� The same is true of all the information we have obtained so far
on the equation of the curve � itself�

To write � in terms of the uk�s� we consider the expansion of E near
P
� and set

���� E � Nc log Q� log � � log �� �
�X
i��

siQ
�i��

In view of the third constraint in �

�� the coe�cient s� is �� The next
Nc � � coe�cients s�� � � � � sNc provide independent coordinates for the
leaf MNc�Nf

� We identify them with the order parameters si of the
gauge theory� as de�ned by �
���

With this identi�cation� it is easy to determine all the coe�cients of
A�Q� in terms of the sk �s� since the Abelian integral E is also given by
the equation

���� E � log w � log �A� �A� �B������

We shall work it out explicitly when Nf � Nc � �� Set

A�Q� �
NcX
i��

ciQ
Nc�i�
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In this case� we may rewrite on one hand the expansion ���� as

���� E � log � � log �QNc �
NcX
i��

siQ
Nc�i � O�Q�����

and on the other hand� the expansion ���� as

���� E � log � � log �A� �

�

B

A
�O�Q�����

Comparing the two equations� we �nd that A�Q� is monic� and that
c� � s� � �� This implies in turn that A�� � Q�Nc�� � O�Q����� and
we obtain for Nf � Nc � �

QNc �
NcX
i��

siQ
Nc�i � A� �

�
BQ�Nc � O�Q����

Altogether� setting

y � w �A�Q�� tk�m� �
X

i������ik

mi� � � �mik �

and making the identi�cation % � %
�Nc�Nf

Nc�Nf
� where %

�Nc�Nf

Nc�Nf
is the

dynamically generated scale of the theory� we have shown

Theorem 	� Let MNc�Nf
be the leaf of the universal con�guration

space Mg�n�m� de�ned by the level sets ������ � � ������ and de�ne d�
as d� � QdE� Then MNc�Nf

can be parametrized by the A�periods ai�s
of d�� or by the coe
cients s�� � � � � sNc of ����� The equation of the
curves � �bering over MNc�Nf

is y� � A�Q���B�Q�� with B�Q� given
by ����� For Nf � Nc � �� the equation of the curve � takes the form
suggested by Hanany and Oz

����

y� �


� NcX
i��

siQ
Nc�i �

%
�Nc�Nf

Nc�Nf

�

Nf�NcX
k��

tk�m�QNf�Nc�k

�A�

�%�Nc�Nf

Nc�Nf

NfY
i��

�Q�mi��

Finally� we note a possible interpretation� in the context of integrable
models� for both the Abelian integrals E and Q appearing in the form
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d� of supersymmetric gauge theories� For pure SU�Nc�� Q corresponds
to the eigenvalues of the operator �L��n � �n
� � vn�n � cn���n��
de�ning the periodic Toda chain� and exp E to the eigenvalues of the
monodromy operator �T��n � �n
Nc � In presence of hypermultiplets�
the periodic boundary condition gets shifted to an aperiodic Toda chain�
with the &monodromy& operator T rather of the form �T��n � �n
Nc�PNf

	�� �n�	�n
Nc�	�
In ����� Gorsky et al� suggest other representations in terms of spin

chains� It would be interesting to understand better the relation between
these di�erent constructions�

Appendix

In this Appendix� we provide a proof of Theorem ��

Assume that the di�erentials of all the coordinates are linearly de�
pendent at a point of our universal con�guration space� Then there
exists a one�parameter deformation of this point �i�e�� a one�parameter
deformation of the curve �t and of all the other data� with the derivative
�tjt�� of all the data equal to zero� In particular

�A��� �t�Q�E� t�dE�jt�� � ��

since the left�hand side is a holomorphic di�erential on �� with zero
periods and must be identically zero� Let � be a point of the zero divisor
of dE on ��� For simplicity� we consider �rst the case where this point
is a simple zero� Then� locally� the equation dE���t�� � �� ��t� 	 �t

de�nes a deformation of �� In a neighborhood of our point on the
universal con�guration space� the Abelian integral Q is a holomorphic
function in this neighborhood� and has an expansion of the form

�A��� Q�E� t� � q��t� �
�X
i��

qi�t��E � Et�
i���

where Et is a critical value of Abelian integral E�

�A��� Et � E��t��

and the qi�s are analytic functions of the variable t� Since

�A��� dQ�E� t� � q��t�
dEp
E �Et

� q�dE �O�E �Et�
����dE
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and thus q���� �� � in view of the assumptions of Theorem �� the equality

�A�	� �tQ�E� t�jt�� � q�����tEtjt��p
�E � Et�

� O���

and �A��� imply

�A�
� �tEtjt�� � ��

Next� we show that �A�
� yields in turn that

�A�
� �t�i�E� t�jt�� � ��

where

�i�E� t� �

Z E

P t
�

d�i

is the Abelian integral of the normalized holomorphic di�erential d�i�
Indeed� the left�hand side of �A�
� is an Abelian integral with possibly
poles at the zeros of dE� Its expansion at these zeros similar to �A���
leads to that it is holomorphic at these points due to �A�
�� Thus the
left�hand side of �A�
� is a holomorphic Abelian integral with zero A�
periods� and must be identically �� Its B�periods must also be zero� and
hence

�t
ij�t�jt�� � ��

where 
ij�t� is the period matrix of �t� In view of the in�nitesimal Torelli
theorem� this can only be true if �� is a hyperelliptic curve� and �t�� is
transversal to the moduli space of hyperelliptic curves� In order to �nish
the proof that up to the order O�t�� the curve �t does not change � we
shall show that if �A�
� is ful�lled for some hyperelliptic curve ��� then
the vector �t�� is tangent to the moduli space of hyperelliptic curves�

We �x on �� a pair of distinct points P� for which there exists a
function � with simple poles at these points and holomorphic everywhere
else� We may choose them so that dE�P�� �� �� Let

�A��� � � a��E �E�
�� � b� �O�E �E�

��� E
�
� � E�P��

be the expansions of � at the points P�� Then on �t� there exists
a unique meromorphic real�normalized Abelian integral ��E� t�� with
simple poles at the points P��t given by E�P��t� � E�

�� and whose
expansion near these points has the form of the right�hand side of �A���
identically in t� Arguing just as before� we can conclude that

�A��� �t��E� t�jt�� � ��
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This means that� up to order O�t��� the periods of d��E� t� are the
same as the periods of d��E� ��� and thus equal to zero� The function
��t� is a single�valued function with only two simple poles� the curve
�t is hyperelliptic� and �t�� is a tangent vector to the moduli space of
hyperelliptic curves�

This completes the proof that� up to order O�t��� the curve �� � �t

does not change� Now we have to show that the punctures and the jets
of local coordinates also do not change�

For g � � or �� the nontrivial automorphism group of the curve
allows us to �x the puncture P�� For g � �� there exists a holomorphic
di�erential d�� with

�A���� d���P����� �� �

and dE not vanishing at at least one of its zeros

�A���� d���p�� � �� dE�p�� �� ��

As before� as a consequence� the Abelian integral

�A���� ���P � �

Z P

P�

d��

must satisfy the relation

�A���� �t���E� t�jt�� � ��

when it is considered as a function of E� The derivatives with �xed E

or P are related to each other by �c�f� �����

�A���� �t���P � � �t���E� t� � �tE�P� t�
d��
dE

�

Taking the derivative of �A���� at P � p�� we get

�A��	� � � �t���p��jt�� � � ��tz�P��t��jt��� d��
dz

�P������

where z�P � is any local coordinate in a neighborhood of P����� Thus�
up to order O�t��� the point P��t� � P���� does not change�

At the points P��t� the function E has a constant value �which is
in�nity�� In view of �A���� and the fact that �tP�jt�� � �� we then have

�A��
�
�
�t

Z P��t�

P�

d��
�jt�� � ��
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Since d�� does not vanish at P���� �c�f� �A������ we conclude that
�tP��t�jt�� � ��

The next step is to prove that jets of local coordinates at the punc�
tures do not change� We proceed in the same way as before and con�
sider the derivatives of the real�normalized di�erentials d��k� which have
poles of the form

�A��
� d�k � d�Ek��n� �O����� k � �k�� � � � � kN�� k� � n��

at the punctures P�� and are holomorphic otherwise� Exactly in the
same way as before� our assumptions imply that

�A���� �t�k�E� t�jt�� � ��

The last equalities yield that the n��jets of local coordinates which
were used to de�ne E do not change� The theorem is proved under the
assumption that all zeros of dE on �� are simple�

We consider now the general case� where dE may have multiple
zeroes� Let D �

P
�s�s be the zero divisor of dE� The degree of this

divisor is equal to

�A����
X
s

�s � �g � � �N �
NX
���

n��

Consider a small neighborhood of �s� viewed as a point of the �bration
N � above the original data point in the universal con�guration space�
Viewed as a function on the �bration� E is a deformation of its value
E�P�m�� above the original data point� with multiple critical points
�s� Therefore� on each of the corresponding curve� there exists a local
coordinate ws such that

�A���� E � w
s
�
s �P�m� �


s��X
i��

Es�i�m�wi
s�P�m��

The coe�cients Es�i�m� of the polynomial �A���� are well�de�ned func�
tions onMg�n�m�� If �s � �� then Es�� coinsides with the critical value
E��� from �A���� In the same way as before� we can prove that �A���
implies that

�A���� �tEs�i�t�jt�� � ��

after which the arguments become identical to the previously considered
case� Hence Theorem � is proved�
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